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Thermodynamic properties may vary to a considerable extent across the homogeneity range of a nonstoichio- 
metric compound. It is shown that the variations in thermodynamic properties depend upon the nature and 
distribution of point defects in the lattice as well as upon the change in composition of the compound. A method 
of computing thermodynamic activities across the entire existence range of the nonstoichiometric compound 
is presented. 

Introduction 
It can be shown (I) thermodynamically that all 

crystalline inorganic compounds are normally non- 
stoichiometric (i.e., have variable compositions) 
above absolute zero. Brewer (2) has pointed out that 
thermodynamic activities, and therefore, the thermo- 
dynamic quantities calculated therefrom, may vary 
to a considerable extent across the existence range 
of a compound. For example, in MnO at 165OC, the 
oxygen activities range (3) from about lop5 at the 
stoichiometric composition to 10-l at MnO,+,. 
Since the variation in activity may have pronounced 
effects on the prediction of chemical behavior, it is 
necessary to know the thermodynamic properties as 
a function of composition across the entire existence 
range of a compound. 

Deviations from stoichiometry are due to 
imperfections in the lattice. Consider a compound 
MX,, where M represents a metal (or the more 
electropositive element), X is a nonmetal (or the 
more electronegative element), and s is the ratio of X 
to M in the stoichiometric compound. For inter- 
metallic compounds, X will represent the more 
volatile element for the purposes of later discussion. 
At any temperature above absolute zero, the lattice 
may contain six possible types of basic point defects ; 
interstitial X atoms, X1, metal vacancies, I&, 
X substitutionals (i.e., X atoms on M sites), XM, X 
vacancies, &, interstitial metal atoms, MI, and M 
substitutionals, Mx. An excess quantity of any of 
the former three defects will lead to positive devia- 
tions from stoichiometry, MX,+a, while an excess of 
any of the latter three will result in negative devia- 
tions from stoichiometry, MX,+ 

In most solid compounds, the deviations from 
stoichiometry are so small that they are difficult to 
detect by usual experimental techniques. However, 
there is a large group of compounds, particularly 
those of the transition elements and intermetallic 
compounds, which exhibit wide compositional 
variations. These are usually referred to as non- 
stoichiometric compounds. The purposes of this 
paper are to show that the variation in thermo- 
dynamic properties of a nonstoichiometric com- 
pound is a function, not only of the defect concentra- 
tion, but also of the defect structure (i.e., the type 
and distribution of defects in the crystal lattice) and 
to outline a method whereby the thermodynamic 
activity may be calculated as a function of com- 
position across the whole existence range of a 
nonstoichiometric compound. 

Configurational Entropies 
The total free energy of a crystal MX, containing 

only point defects may be written: 

G = %‘Mx, + NOM gnM + Nnx giIx + XM &?I, 

+ NIX&X + NM(X)gM(X) + NX(M)gXX(M) 

- kTln 
[ 

N! 
NOM! Nx,,,! (N - Nm - Nx&! 

(sN) ! 
xNox~N,~x,~(~~-N~x-N,,x,)! 

(aN)! 
’ NIM! NIX! (aN - NIM - NIX)! 1 (1) 

Nis the number of metal atom sites, sNthe number of 
X atom sites, and aN the number of interstices in 
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TABLE I 

CONFIGURA~ONAL ENTROPIES, S,, OF INTRINSIC DEFECTS FOR n, = 0.01 

Defect Intrinsic defect 
type concentration, n3 

NaCl-type 
structure 

Fluorite 
structure 

Schottky 
Klhl+ Ox) 

Frenkel 
WI + q M) 

Anti-Frenkel 
(XI + Ox) 

Interstitial 
0% + XI> 

Antistructure 
(Mx + Xd 
Mx+~M 

Mx+Xr 
x,+ ox 
&+MI 

N&N = NnxisN 0.223 0.334 

N,IN = No&’ 0.236 0.223 

N,x/sN = N&N 0.236 0.417 

&IN = NxlsN 0.250 0.306 

(s + 1) N,,x,/sN = (s + l)Nx&sN 0.125 0.169 
(s + 1) &cx,IsN = NOM/N 0.174 0.195 
(s + 1) NM(x,IsN = NrxlsN 0.188 0.284 
6 -t 1) Nxc&N = NaxlsN 0.174 0.302 
NdN = (s + 1) NxdsN 0.188 0.191 
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the lattice where s and a are constants characteristic 
of the crystal structure. NOM, No,, NIM, NIX, 
N N,,,, are the numbers of metal vacancies, 
X%Cn vacancies, metal interstitials, X interstitials, 
X substitutionals, and M substitutionals, respect- 
ively, and gnM, mxv 8Ih4, ax, gX(M), gM(x) are the 
corresponding free energies of formation of the 
defects (other than the contribution from configura- 
tional entropy). pMx, is the free energy of the ideal 
defect-free crystal. The In term in Eq. (1) represents 
the configurational entropy of the crystal due to the 
presence of defects. In practice there are rarely more 
than two types of basic point defects present in the 
lattice. At the stoichiometric composition, two 
opposite types (those causing positive and those 
causing negative deviations from stoichiometry) are 
present in equivalent concentrations. The concentra- 
tion of defect pairs at the stoichiometric composition 
expressed in terms of the ratio of the number of 
defects to the total number of sites in the lattice is 
frequently referred to as the intrinsic defect concentra- 
tion, ni. Expressions for intrinsic defect concentra- 
tion for each of the nine possible types of intrinsic 
defect pairs are shown in the second column of 
Table I. Using these expressions, the following 
relations for configurational entropy may be derived 
from the In term in Eq. (1) for each type of intrinsic 
defect. 

Schottky Defects : 
S,/R=(s+ l)(ni - l)ln(l -ni) 

- ni(s + l)lnn, 

Frenkel Defects : 
SC/R = (ni - 1) In (1 - ni) + (ni - a) In (a - ni) 

- 2nilnni + alna 

Anti-Frenkel Defects : 
SC/R = s(ni - 1) In (1 - q) - sn, ins 

+ (sni - a) In (m - sn,) - 2sni In ni 
+ alna 

Interstitial Defects : 
SC/R = (q + ni - a) In (a - sni - ni) 

- ni In Izi - Sni In (snJ + a In a 

Antistructure Defects : 
SC/R = In [(s + I)/@ + 1 - Sni)] 

+ sln [(s + l)/(s + 1 - ni)] 
+ [Sni/(S + l)] In [(S + 1 - sni) 
X (S + 1 - ?ZJ/.Tni2] 

(Mx + 0,) Defects: 
S,..R = (ni - 1) In (1 - ni) + s In (S + 1) 

+ [s(ni - s - l)/(s + l)] 
X ln(s+ 1 -ni) 
- [nni(2s + l)/(S + l)] lnni 
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(Mx + X,) Defects : 
SJR = s In (S + 1) + [S(ni - s - I)/(s + 1)] 

xln(s+l--nJ 
+crlna+(sni-cr)ln(a-snJ 
- sn, Ins 
- [StZi(S + 2)/(S + 1)] In ?Zi 

(X, + Ox) Defects : 
SJR = ln(s + 1) + [(Sni - s - I)/(8 + 1)] 

x ln(s+ 1 -ni) 
+s(ni-I)ln(l -nj)-.Y&lnni 
- [Sni/(S + 1)] In (Sni) 

(X, + M,) Defects : 
SC/R = In (s + 1) + [(Snr - s - I)/(s + 1)] 

x ln(s+ 1 -snJ 
+ (ni - I%) In (I% - PZi) - [,Wi/(S + 1)] In S 
+ a In CL - [&(2,!? + l)/(S + l)] In ni. 

Thus, each type of intrinsic defect leads to a different 
relation for configurational entropy. The third and 
fourth columns in Table I show comparisons of 
values obtained from these relations for 1% 
intrinsic defects (ni = 0.01) in an NaCEtype structure 
(s = 1, a = 2) and a fluorite-type structure (s = 2, 
a = 1). It is seen that the configurational entropy 
may differ by a factor of almost 23 (e.g., from Anti- 
Frenkel to Anti-structure defects in the case of the 
fluorite-type structure). The variance among values 
is due mainly to the fact that each particular type of 
defect is distributed over a different number of sites. 
It should be mentioned that of the nine possible 
defect types listed in Table I, only five, Schottky, 
Frenkel, Anti-Frenkel, Anti-structure, and (X, + 
&) defects have ever been observed (4). 

As the compound deviates from the stoichio- 
metric composition, the concentration of one type of 
point defect of the intrinsic defect pair increases, 
while the concentration of the other type decreases 
(the product of the concentrations of the two types 
of basic point defects remains essentially constant 
(5)), so that at large deviations from stoichiometry, 
the assumption can be made that only one type of 
basic point defect is present. Using this assumption, 
an expression for the change in configurational 
entropy, AS,, as a function of deviation from 
stoichiometry, 6, may be derived for each type of 
defect from the In term in Eq. 1. In accordance with 
the formula MXskB, the general relationship 
between 6 and defect concentration is: 
S= 

For positive deviations from stoichiometry, the 
following relations were obtained: 

X Xnterstitials: 
A&/R = a In [ct/(a - S)] + 6 In [(a - 6)/S] 

M Vacancies : 
A&/R = In [(s + S)/s] + [S/(s + S)] In (s/S) 

X Substitutionals : 
AS,/R=sln[s(s+S+l)/(s2+sS+s-S)] 

+ [S/(s + 6 + I)] 
x In [(s* + sS + s - S)/S]. 

The variation of AS, with 6 is shown in Fig. 1 for 
various values of s and a. It can be seen that the 
dependence of configurational entropy on the 
degree of nonstoichiometry is different for each type 
of point defect. For negative deviations from 
stoichiometry, the following expressions for the 
change in configurational entropy with 6 were 
obtained : 

X Vacancies : 
A&/R = s In [S/(X - S)] + S In [(s - S)/S] 

M Interstitials : 
SC/R = a In [a(~ - S)/(as - aS - S)] 

+ [ S/(s - S)] In [(as - a6 - S)/S] 

X Substitutionals : 
SC/R = sln [s(s + 1 - S)/(s2 + s - sS - S)] 

+ [S/(s + 1 - S)] 
x In [(s2 + s - sS - S)/S]. 

Similar curves to those shown in Fig. 1 may be 
obtained for negative deviations from stoichio- 
metry. Therefore, the type of defects present in a 
nonstoichiometric compound may be deduced from 
the variation of configurational entropy with 
composition. Experimentally, one usually measures 
the thermodynamic activity as a function of 
composition. 

Thermodynamic Activities at Large Deviations 
from Stoichiometry 

The following expressions for thermodynamic 
activity of the X component, a,, of a nonstoichio- 
metric compound, MX,,s, as a function of defect 
concentration have been derived (5) from Eq. (1). 
Each type of point defect leads to a different 
functional relationship between a, and S because 
of the differences in the number of sites over which 
the defects may be distributed, and also because of 
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FIG. 1. Configurational entropies as a function of stoichio- 
metry in the compound, MX,+a. 

dissimilar changes in the total number of sites on 
defect formation. Similar relations may be derived 
in terms of the M component. 

For M vacancies : 
a, = 
cQM 

[ 
q$lw - N,M - &Y(sN - NQX - NM(,)) 

N”“(aN)“‘“(sN) 1 
(3) 

where 
GM = exp [bMxs + md/~W (4) 

At large deviations from stoichiometry NoErI > NIM, 
NIX, NQX, NM(X); 6 = sN&(N - N&, and Eq. (3) 
may be rewritten : 

ax = Cm, [6/(s + 6)]“‘. 

For X interstitials: 

(5) 

ax = Gx[NIxI(~N - NIX - &)I (6) 
where 

Gx = exp kIxW). (7) 
For large deviations from stoichiometry NIX % N,M, 
6 = N,,/N, and Eq. (6) becomes: 

ax = WWa - SM. (8) 

For X substitutionals: 

ax = CXcM) 
x NxfM,(sN-N~x-NM(x$(aN-N,M-N,x)” “w’) 

N(sN)“(aN)” 1 
(9) 

where 
C X(M) = exp bMXs + gX(M))/@ + l) kTl. (10) 

For large deviations from stoichiometry NXtMj % 
NQX, NM(X), %M&x; 6 = (s + lWx,,,IW - Nx(M)), 
and Eq. (9) becomes: 

ax = C,&S/(s + 6 + l)]l’(S+‘). (11) 
For X vacancies: 

ax = CoxKsN - kx - NM,xJIN~xl (12) 
where 

CO, = exp (-gox/W. (13) 
For large deviations from stoichiometry Nox % 
N M(X), 6 = N&N and Eq. (13) becomes: 

ax = CQ~[(S - WI. (14) 

For M interstitials: 
ax = GM 

X 

[ 

(aN - NrM - N&+‘(sN - Nox - NM,,,) 
x W - NOM - Nx(M)) 

sNIM N2(aN)OL 1 
I” 

where 
(15) 

GM = exp [b.hxs - gJ.W. (16) 

For large deviations from stoichiometry N,M + N,x, 
NOX, NM(X), NOM, Nx(M); 6 = SNIMIW + NIM) and 
Eq. (16) becomes: 

a, = C,,[(as - a8 - 6)“+‘/6(as - a8)Q]“’ (17) 

For M substitutionah: 
ax = CM(~)(sN - NQX - NM(~)) 

x (N - NOM - NXcM))(aN - NIM - N&OL “w’) 
NMcx)(sN)S(aN)‘N 1 

(18) 
where 

C M(X) = exp bMX, - gM(x)Ms + ow. (19) 

For large deviations from stoichiometry NMcx, + 
NOW Nx(M), NM, NIX; 6 = (s + l)NM&(N + 
NX& and Eq. (19) becomes : 

ax = CM(xj(s + l)(s - S)/[(s2 + s - sS)s 6]1/(s+1). (20) 

Eqs. (5), (8), and (11) apply for positive deviations 
from stoichiometry and Eqs. (14), (17), and (20) 
apply for negative deviations from stoichiometry. 
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It is apparent that if the types of defects responsible 
for the deviations from stoichiometry and the 
values of the appropriate constants Cdefect (contain- 
ing the energies of defect formation gdefect) are 
known, the thermodynamic activity as a function of 
deviation from stoichiometry, 6, may be computed 
at large deviations from stoichiometry using Eqs. 
(5), (8), (ll), (14), (17), and (20). Conversely, the 
nature of the predominant defect and the values of 
the constants may be determined by comparing 
experimental activity data at large deviations from 
stoichiometry with the same set of equations. This 
has been done (5) for several systems. The case of 
positive deviations from stoichiometry in lanthanum 
dihydride at 706C is illustrated in Fig. 2. (If the 
standard state of hydrogen is taken as Hz gas at 1 
Torr, the activity of hydrogen in the hydride may be 
expressed as the square root of the equilibrium 
hydrogen pressure in Torr). The computed curves 
were obtained from Eqs. (5), (8), and (11) by 
calculating the values of the constants, C&, Cm, 
and GcLajp which gave the best fit with the data in 
each case. Lanthanum dihydride has the fluorite 
structure so that CL = 1 and s = 2. The shapes or 
slopes of the curves in each case are determined by 

z*l-- ’ I I I I I $ 
/ 

.’ 
/ 

/a 

.06 .08 .I0 .I2 .I4 .I6 .I 

rl 

FIG. 2. Activity of hydrogen in LaH,+* as a function of 
deviation from stoichiometry at 706C. Data of Korst and 
Warf. 

the particular function of 6 which is characteristic of 
that type of defect. The constants merely determine 
the relative height of each curve on the ordinate. It is 
seen here that the activity data of Korst and Warf (6) 
give the best fit for the case of interstitial hydrogen. 
This is in accordance with neutron diffraction (7) 
and NMR studies (8) which have established that 
the defects are indeed hydrogen interstitials. 

The deviation of the computed curve from the 
experimental points as the concentration approaches 
stoichiometry (6 = 0) is due to the increased concen- 
tration of the opposite defect of the intrinsic defect 
pair. As mentioned above, Eqs. (5), (8), (1 l), (14), 
(17), and (20) were derived with the assumption that 
only one type of basic point defect is present. 
Consequently, they are not valid in the vicinity of 
the stoichiometric composition. 

In a similar manner the experimental data at large 
negative deviations from stoichiometry can be used 
to determine the predominant defect in this region 
and also the value of the corresponding constant. 
The data for lanthanum dihydride at 706C are 
shown in Fig. 3. The computed curves were obtained 
from Eqs. (14), (17), and (20). It appears that hydro- 
gen vacancies are the predominant defects at large 
negative deviations from stoichiometry. Here again, 
deviation of the computed curve from the experi- 
mental data is observed as 6 approaches zero. The 

6.0- 
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5.2 - 

N 4.8- 
1 - 4.4- 

5 4.0- 

&- 3.6- 

3.2- 

FIG. 3. Activity of hydrogen in LaH2+ as a function of 
deviation from stoichiometry at 706C. Data of Korst and 
Warf. 
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intrinsic defect for LaHz is therefore the Anti- 
Frenkel defect, hydrogen interstitials and hydrogen 
vacancies. 

Computation of Activities 
In order to illustrate how the activity across the 

entire existence range (including compositions in 
the vicinity of and at the stoichiometric composition) 
may be calculated, let us consider the case of Anti- 
Frenkel defects in lanthanum dihydride in detail. 

Anti-Frenkel Defects 
For Anti-Frenkel defects (X, + 03, Eq. (2) may 

be written : 
6 = u-4, - &Jl~ (21) 

and Eqs. (6) and (12) become : 
ax = Gx[Nxl(~~ - NIX)1 (22) 

and 
ax = CUXW - wJxw0x1 (23) 

respectively. Elimination of N,, and Nnx from 
Eqs. (21)-(23) yields: 
(a-8)Ux2+C~x(a-s-6)ax-GCIxUx= 

Cm C&s + 8). (24) 
For La&g, this equation becomes : 
(1 - 8) aH2 - (8cIH + 6cuH + co,) aH = 

cI” c!3Hc2 + s)- (25) 
It was shown in the previous section that CIH and 

Co, can be determined from hydrogen activity data 

at large positive and negative deviations from 
stoichiometry, respectively. For a hydrogen stan- 
dard state of hydrogen gas at 1 Torr pressure, the 
values calculated were C1, = 135 and Cm, = 0.146 
at 706C. Utilizing these values, the activity across a 
wide composition range of lanthanum dihydride 
(including the stoichiometric composition) may be 
computed from Eq. (25). The result is illustrated in 
Fig. 4 where it can be seen that the points at 6 = 0.08, 
0.07, and 0.05 which previously were above the 
calculated curve in Fig. 2, and the points at 6 = -0.01 
and -0.02, which were considerably below the 
calculated curve in Fig. 3, are now much closer to 
the curve computed from Eq. (25). 

As shown in Eqs. (7) and (13), the constants CIH 
and Cm, contain the free energies of defect formation 
g,H and goH with respect to some standard state. In 
the case discussed above, the standard state is 
hydrogen gas at 1 Torr pressure. Therefore, g,H is 
the free energy of formation of a hydrogen inter- 
stitial by addition of an H atom to the crystal from 
hydrogen gas at 1 Torr. goH is the free energy of 
formation of a hydrogen vacancy by removal of an 
H atom from the crystal to hydrogen gas at 1 Torr. 
Since these free energies are in terms of some arbitrary 
standard state, the values of C,, and Cn, cannot be 
computed independently. However, the ratio CD,/ 
C,, is independent of standard state. We can write: 

CIH/CUH = exp [km + gdkT1 = exp (g&T) (26) 

where gAF is the sum of the free energies of removing 

28., , , , , , , , , , , , , , , , , 
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FIG. 4. Comparison of activity data of Korst and Warf for LaH 2+8 at 706C with the corresponding curve calculated from 
Eq. (25). 



56 LIBOWITZ 

an H atom to its standard state to form a vacancy 
plus the free energy of removing the H atom from 
the same standard state and placing it into an 
interstice in the crystal. Thus, the energy of the 
standard state is canceled out and g,, is merely the 
free energy of intrinsic Anti-Frenkel defects; i.e., 
the energy necessary to remove an H atom from its 
normal site and place it into an interstice. 

The energy of intrinsic defect formation may be 
computed from lattice energies (9) so that ratio 
C&C,u may be obtained independent of activity 
measurements. Therefore, in some cases, it is only 
necessary to obtain data at one side of the stoichio- 
metric composition (either large positive or large 
negative deviations from stoichiometry) in order to 
calculate activities across the entire existence range 
of a compound. In addition, if the ratio of constants 
is known at one temperature, it may be calculated at 
other temperatures from Eq. (26). 

By equating Eqs. (22) and (23) at the stoichio- 
metric composition where Nnx = Nrx, a relation 
between the ratio of constants and the intrinsic 
defect concentration, n, (as defined in Table I) may 
be obtained : 

C,X/Cn = (S - Sni) (a - Sni)/(Sn()2* 

Consequently, if the intrinsic defect concentration 
is obtained in an independent manner (e.g., density 
measurements), the ratio of constants can be com- 
puted. Conversely, the intrinsic defect concentration 
may be calculated from the constants obtained from 
activity measurements at large deviations from 
stoichiometry. 

Schottky Defects 
For the case of Schottky defects, Eqs. (2), (3), and 

(12) may be written: 

a = coM N&W - Nox) 
X sN(I+SVS 1 (27) 

ax = CnxW - NoxYR~xl~ (28) 

By eliminating NON and Nnx from these three 
equations, the following expression relating activity 
to 6 for Schottky defects is obtained : 

(ax + Cox)“+‘(s + 6) = C~M[Cnx(s + 6) + Sax] (29) 

For compounds with one-to-one stoichiometry 
(s = l), Eq. (29) becomes: 

(1 + 6) ax2 + (2+x + 2SC~, - SC& a, 
+ C,,( 1+ 6) (Cox - Co,) = 0. 

From Eqs. (4) and (13) we see that the ratio of 
constants in this case is: 

c~M/c~X = exp bMXs + gnM + sgoX)/skTl (30) 

goM and gox are the free energies of formation of an 
M vacancy and an X vacancy by removing an M 
atom and an X atom to their respective standard 
states, and ,+,.& is the free energy of formation of a 
formula unit of MX, from M atoms and X atoms in 
their standard states. Therefore (pMxs + gnM + sgox) 
is the free energy of formation of Schottky defect, 
i.e., the energy necessary to remove an M atom and 
s X atoms from their normal sites to create vacancies 
and to form new M and X sites. This quantity can 
be calculated from lattice energies (9). 

From Eqs. (27) and (28) and the definitions of 
intrinsic defect concentration in Table I, the 
following relationship is obtained for Schottky 
defects : 

C~M/C~x = n;ts+‘)/s. 

In a manner similar to the ones used for Anti- 
Frenkel and Schottky defects, the relations between 
thermodynamic activity and deviation from stoichio- 
metry, 6, may be derived for each of the remaining 
seven types of possible intrinsic defect pairs. These 
are outlined below. 

Frenkel Defects 
For the case of Frenkel defects, Eqs. (2), (3), and 

(15) may be rewritten as follows : 

6 = s(NoM - Nd/(N + NW - Nd (31) 

a, = C&N&CLN - N&/QN~+~]“~ (32) 

UX = C,M[(OZN - N&“+‘(N - N&/P IvIM N Or+‘]“‘. 
(33) 

It is not possible to get a general analytic relation 
between a, and 6 by simple algebraic manipulation. 
However, in specific cases when a and s are known, 
ux as a function of 6 may be obtained by elimination 
of NOM and NrM from Eqs. (3 l)-(33). 

The ratio of constants in this case is : 

COdGM = ew NmM + hd/~JCTl 
where gnM + g,, is the energy necessary to form a 
Frenkel defect. Also, from Eqs. (32) and (33) and 
Table I at 6 = 0, 

c,M/c,M = u ‘-‘(Cr - ni) (1 - ni)/?Zi2. 

Interstitial Defects 
For the case where the intrinsic defects are inter- 

stitial defects, Eqs. (2), (6), and (15) may be written : 

6 = (NIX - sN,,)/W + NIM) (34) 
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ax = GxW,xl(~N - NIX - &)I (35) 
ax = C,,[(aN - NIM - NIx)a+l/NIM(aN)“]““. (36) 

Eliminating N,, and N,M from Eqs. (34)-(36) yields 
the following relationship between a, and 6 
ax”a~[C,x(s+s)+ax(s+6+1)]“[axcr-a,6-C,xs] 

= c~Mc~~‘(cd+ccs+s)pl+‘. (37) 
It can be seen that this is at least a cubic equation in 
a,, and it becomes much higher order if s, u >l. 
Therefore, it is advantageous to use a computer to 
work out the exact variation of a, with 6 for specific 
values of C,, and C,,. 

From Eqs. (7) and (16) : 

GX/GM = exp bMxs + sax - hW~1, 
and from Eqs. (35) and (36) and Table I: 

C,X/C,M = [(OZ - ni - SIZi)a+S+l/SS OLa $+‘]l”* 

Antistructure Defects 
For antistructure defects, Eqs. (2), (9) and (18) 

become : 

6 = (8 -I- OWX,M, - NM,X,YW + NM(X) - NX(M)) 
(38) 

ax = (CX(M)IWWX(M)W - sqx))s/.ws+’ (39) 
ax = CM(X)W - NM,XJW - NX(M)Y’(S+l)/ 

N(SSNEn(x))l’(s+‘! (40) 
Here again, it is not possible to obtain a general 
analytic expression relating a, and 6, but by 
eliminating Nhlcxj and NXcMj from Eqs. (38)-(40) for 
specific values of s and a, and using EDP techniques, 
ax as a function of 6 may be computed for specific 
values of CXcMj and CMcxj. 

From Eqs. (10) and (19) we have: 

CX(M)ICM(X) = exp KgXcM) + gMtxJ/(s + 1)W 
and from Eqs. (39), (40) and Table I: 

c,,,,/c,,,, = [(s + 1 - n&s + 1 - snl)/snl*]“(s+‘). 

M Vacancy plus M Substitutional Defects 
For ( q iM + M,) defects, Eqs. (2), (3), and (18) 

become : 

6 = WOM - (s + 1) hfcx,l/W - elhl) (41) 

a, = Co, NgM(sN - NM(x))/~N”+‘)IS (42) 
ax = CM(X)W - NM(x,MN - NoMYNM~x, 

x (sN)SN]“@+l) (43) 
As in the cases of interstitial defects and anti- 
structure defects, a general analytic expression 
cannot be obtained by eliminating NMcxj nad NmM 
from Eqs. (41) to (43). However, ax as a function of 6 

may be obtained for specific values of s, COG, and 
CM(X). 

From Eqs. (4) and (19) we may write : 

COMMICM(X) = 
exp bMXs + mM + &IM + sgM(X))/s(s + I) kTl 

and from Eqs. (42), (43) and Table I: 

C&CM(x) = [(l - TZJ(S + l)/~~2sf’)‘s]“s+‘. 

X Interstitial plus M Substitutional Defects 
For (Xi + M,) defects, Eqs. (2), (6), and (18) may 

be written : 

6 = [NIX - 6 + 1) N,,x,l/(N + NM(X)) (4) 

ax = GxWIXK~N - %x)1 (45) 

ax = CM(X)W - NM,x,NW - N,x)“/N~cx, 

(sN)S(~N)~]“~+’ (46) 

Eliminating N,, and N,(,, from Eqs. (44)-(46) yields 
the following relationship : 

ap[s(ux + C,x)(s + 1 + S)l”(ux a - &a, - W,,) 
(ax + GXY 

= c$& C&[(u, + C,)(S + s + ss + S) - ax a]s+1. 
(47) 

It is seen that this equation involves a, to at least the 
fifth power (for s = 1 and u = l), thus making the 
use of a computer desirable for obtaining the explicit 
dependence of a, on S for specific cases. 

From Eqs. (7) and (19) we obtain: 

cIX/cM(X) 

= exp [(%h + ax f gM(X) - pMX3)ks f 1) W 
and from Eqs. (45), (46) and Table I we obtain: 

CIX/CM(X) 

= [(a-sn,)~+S+‘(s+ 1 -?zi)S+‘/fzaSS+‘(S+ l)sn;+*]“S+i. 

X Substitutional plus X Vacancy 
For the (X, + Ox) intrinsic defect, Eqs. (2), (9), 

and (12) may be written : 

s = [(s + 1) WX(M) - NoxWW - Nx(M)) (48) 

ax = CX(M)[NX(M@’ - Nnx)s/W)s N”“+’ (49) 

ax = CnxW - Nox)lNox- (50) 
Eliminating NXcMj and Nnx from Eqs. (48)-(50) 

yields the following relationship between ax and 6: 

a&, + C~x)“+‘(s + 1 i- S) 
= c;~~)(sc,, + sax + SC&. (51) 
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From Eqs. (IO) and (13) we obtain : 

CX(M)/COX 

= exp &-% + gX(M) + 6 + 1) mxl/(s + YW 
and from Eqs. (49), (50) and Table I : 

CX(M)/COX = [(l - ?li)(S + l)/SPZ~+2]“S+‘. 

X Substitutional plus Metal Interstitial Defects 
For the (X, f M,) defect, Eqs. (2), (9), and (15) 

become : 
6 = 6 + 1) NX(M) - SNmf 

N + &I - NX(M) 
(52) 

ax = CX(M) 
NX(&?N - N& 

1 

I’@+‘) 
(aN)“N 1 (53) 

a 
X 

= c 
IM 

(EN - N,,Y+‘(N - Nx(d I” c54j 
N,M N(arN)OL 1 * 

As in some of the previous cases, a general expres- 
sion for a, as a function of S cannot be obtained in 
this case. However, for specific values of s, 6, Cx(M) 
and CIM, a, can be computed at various values for 6. 

From Eqs. (10) and (16) we obtain : 

CX(M)IGM 

= exp i[sgx,Mj + (s + OgIM - P~~J/s(s + WU 
and from Eqs. (53), (54) and Table I: 

CX(M)/GM 
= [(a - niy+s+l (s+ 1 -stQ+‘/rY3”(s+ l)n:s+l]“s(s+‘) 

Conclusion 

It has been shown that the configurational entropy 
and, therefore, the chemical potential and thermo- 
dynamic activity of a nonstoichiometric compound 
depend upon the nature of the defects present as well 
as their concentration. From Eqs. (5), (8), (ll), (14), 
(17), and (20), the nature of the defects responsible 
for the nonstoichiometry may be deduced from 
activity measurements at large deviations from 
stoichiometry. Utilizing this information, the 
thermodynamic activity as a function of composition 
may be computed across the existence range 
(including the stoichiometric composition) of a 

nonstoichiometric compound from Eqs. (24), (29), 
and (31)-(54). The free energies of defect formation 
and the intrinsic defect concentrations also may be 
calculated from activity measurements. 

It should be pointed out that the treatment 
presented here neglects interactions between defects. 
Interactions may become important at very large 
deviations from stoichiometry or low temperatures 
or both. Relations between a, and S at large 
deviations from stoichiometry equivalent to Eqs. 
(5), (8), (1 l), (14), (17) and (20) have been worked 
out for the case of defect interactions (ZO), and 
these may be used to derive a, as a function of 6 
across the whole existence range in the manner des- 
cribed in the previous section, although the algebra 
would be considerably more cumbersome. 

In nonstoichiometric semiconductingcompounds, 
the distribution of electronic defects must be taken 
into account at temperatures above which the 
defect ionizes. This can be done (II) relatively 
simply by an additional term in the expression for 
configurational entropy. 
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